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Effects of disorder in two-dimensional photonic crystal waveguides
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The effects of randomness on the guiding properties of waveguides embedded in disordered two-
dimensional photonic crystals composed of a finite cluster of circular cylinders of infinite length are investi-
gated for TM-polarized radiation. Different degrees of disorder in the radius, filling fraction, refractive index,
and position are considered for both straight and 90° bent guides. The crystals exhibit similar sensitivity to
refractive index and radius disorder, with a degree of disorder from 15%—20% yielding little substantial change
in the guiding properties. A smaller range of position disorder is also considered. For strong disorder in radius
and refractive index, the guide effectively closes. These results were obtained by a Monte Carlo simulation
method, and the performance of this method is analyzed. The method requires at least ten realizations in some
cases for convergence to commence; substantially more realizations are required for moderate and strong
disorder to achieve accurate results.
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I. PHOTONIC CRYSTALS and local density of stated. DOS) are calculated using a
highly accurate multipole methdd 0]. Note that in this pa-
Photonic crystals—materials with a periodic refractive in-per, references to the electric field intensity denote the inten-
dex distribution—are a subject of worldwide research. Onesity normalized to a unit field strength; the LDOS has been
of the main aims is to achieve a photonic band gap, a rangg&milarly normalized. Quantitative results characterizing the
Of frequencies in Wh|Ch ||ght iS unab'e to propagate in anyeﬁ:ects of fabrication defects for a TM-pOlal’ized field are
direction[1—3]. One of the most important properties of such obtained by Monte Carlo simulatiofil]. Two aspects are
structures is their ability to tailor the path of propagation ofconsidered: studies of straight guides, and studies of guides
light on the scale of the wavelength without diffraction containing two 90° bends. We show that such two-
lossegFig. 1). In particular, Mekiset al.[4] showed compu- dimensional circuits are not very sensitive to disorder, with
tationally that it is possible to bend the direction of propaga-variations up to 20% not generally compromising guidance
tion of light by 90° without substantial losses, a result thatin the cases of radius and refractive index disorder. Disorder
has been confirmed experimental§]. Various circuit com-  Of up to 10% in cylinder positions is also studied, and again

ponents which depend on this and related properties, such ¥4 observe that guidance is not compromised. We further
Y [6] and T junctions[1] and channel-drop filterE7], have  study the size of random ensembles needed to establish such

been proposed. tolerances with accuracy, with ten members at least being

This unique gu|d|ng property of photonic Crysta|s raisesnecessary to observe commencement of convergence at the
the possibility of miniaturizing photonic circuits and as a classical Monte Carlo rate of {N, whereN is the number
consequence, integrating a number of different devices off realizations.
one substrate to create a full photonic cird@l A model of First, we give a short description of the method used to
an all-optical microtransistor has already been prop¢9gd calculate the normalized electromagnetic fi¢®ec. 1) as
To combine and connect the different components inside awell as the Monte Carlo simulation method and its conver-
all-optical chip, it is necessary to establish a clear undergence. In Sec. lll, we study the effects of weak disorder of
standing of the waveguiding properties of such structuresthe radius, refractive index, and position, on guiding for both
Furthermore, a comprehensive understanding of the tolestraight and bent guides, while in Sec. IV we consider the
ances, in other words the degree of imperfection that suchffects of strong disorder and establish the degree of disorder
structures can withstand, is vital for the effective design ofwhere there is a complete breakdown of guidance.
such devices.

Here, we investigate the effects of disorder on the
waveguiding properties of such structures. We model fabri- Il. METHOD
cation defects in two-dimensioné2D) waveguides, based
on a finite cluster oN, dielectric cylinders of infinite length,
arranged in a square lattice with lattice constanby intro- We consider in-plane propagation with tBefield parallel
ducing random perturbations in the radii and refractive indi-to the cylinders. In this casé&he TM polarization the two-
ces of the cylinders as well as in their positions. The guide iglimensional electric Green tensor contains a single nontrivial
excited by a line source parallel to the cylinders, locatedccomponent which can be represented using a multipole ex-
close to the entry of the guide. The resulting field intensitypansion. The wave equation is solved for a point source

A. Outline of multipole method
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FIG. 1. (Color onling Electric field intensitynormalized to a unit field strengtfor a straight guidé252 cylinder$ with no disorder and
with radius 0.8l at wavelengths{a) A =3.3d (in the band gajp (b) A =5.0d (outside the gap and(c) guide with bend$226 cylinders with
radius 0.8l) at A =3.3d. The length of this guidémeasured down the center of the chanfekqual to the length of the straight guide. In
both the cases the guide is excited by a line source parallel to the cylinder axes, as indicated by the black dot.

€2V(r,%)+k2n2(r)V(r,cs):5(r—cs), where V is the z T_h'ese express@ons f&f must be consistent, anq Graf's.ad—
component of the electric field due to a sourcecand ~ dition theorem is used to equate E(B.and(3), given their
normalized to a unit field strength; is the free-space wave US€ ©f i;hfferent origins. We thUS€°btdjm2] an identity of the
number, anch is the refractive index. The field may be rep- fOrm An=x*(CKn+2q.ZmSypBy or, in matrix form,
resented by a Wijngaard expansion, valid everywhere in the

crystal matrix[10], given by A= x*c5)K+SB, 4
_ ~ ex (1) _ where K is associated with the source asB is due to
MUY 4iX (e Hg (kI —c) scattering by all cylindergj# €. An additional relation be-

" tweenA andB is needed to solve this system; this is ob-
aWiule tained from the boundary conditions at each cylinder bound-
+§q: m;w BrnHm (Kl —cgl) ary, and reads

X gim argr ) 1) B=RA+Tx"Q, ®)

where the sums are over ro@® and cylindrical harmonics

(m); the first term represents the source and the remaininﬁhereR ar:de denc.)te.matnceﬁs., ‘.Jf Cégndncal he}rmlonlc Eje'
terms represent the field scattered by the cylinders. Her ’ect|on and transmission coe |c!er[ ], re;pectlve Y, and.
¥*{(c) is 1 for a source exterior to all cylinders and 0 term Q represents a source interior to a cylinder. A full deri-

; c iy int - .. vation may be found in Ref.10]. Combining Egs(4) and
otherwise. Similarly, lettinge, (cs) be 1 if the source lies in (5) yields the following equation:

cylinder ¢ and 0 otherwise, the normalized field expansion

inside cylinder¢ with refractive indexn, is given by (1—RS)B= y™RK + y"TO
- =X X .

V(ric)= EX;”‘(CS)Hgl)(knAr—cSD This system is then solved to find coefficiel®§ and thus
the entire field external to the cylinders. Reconstruction of
the field inside the¢th cylinder requires coefficient€,.
Again, these are obtained from boundary conditions, yielding
(in matrix form)

A local expansion is also valid in an annulus outside each

oo

+ > Chdm(kn|r—c,)emast=—co (2
m=—ow

(€th) cylinder: C=T'A+ R’XintQ'
_ S ¢ _ whereR’ andT’ are matrices of reflection and transmission
vire) m;w [AmIm(Klr =) coefficients. The method is efficient and accurate, even for

L) im argt—c) disordered structures in which the positions, radii, and refrac-
+BpHp (Klr —gf)Je'm&at=a), (3 tive indices of the cylinders are arbitrary.
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A key quantity characterizing the radiation dynamics of athe ensemble size to 48 realizations in later studies. How-
fluorescent source is thigpatially resolvepllocal density of  ever, this had a negligible effect on the results. We investi-
stateg14] p(r;w), given forr in the matrix by gate the relationship between the ensemble size and compu-

tational accuracy below, using additional results from studies
~ 2w using larger ensembles, but with fields computed at selected
p(riw)=—— Im[V(r,1;0)]. points
mC ’
The LDOS provides the spectral distribution of modes to C. Convergence

which a source at a particular point may couple and is pro- i L )
portional to the total power emitted by a line source at that ©OUr computational objective was to estimate the expecta-

~ 1 i i I 2 -
point. Thus, for a given frequency a large valuggofndi- tion values of the normalized intensify(|V|*) or the nor

; e : nalized LDOS E(p) at each pointr on a grid P
cates that light emission at that frequency is enhanced. COF%le 301 points for|V|2 and 151 151 for p). The multi-
respondingly, smalp indicates suppression of emission. In

_ . . . " pole method(Sec. Il A) is exact up to the truncation of the
the following, we normalizg to the dimensionless quantity series, hence the Monte Carlo method estimates the mean of
p=pmc(2w) L. the truncated series. Some indication of the truncation error
is found by considering the difference in the results obtained
B. Monte Carlo simulation for a single crystal with no disorder, using additional terms in
We consider ensembles of realizations with random per€XPansion(1)—(3). For the straight guide, the average rela-
turbations in positiorr,, radiusa,, or indexn, of each tive difference observed at grid points within the cluster be-
cylinder. For studies of intensity in the straight guide, wetWeen the normalized intensity results using 9 tefmsA
consider five types of perturbations. =m=4in Eqs.(l)—z(B)] and 11 terms { 5<m<5), that is,
R1: (Uniform position, two sided)y, uniformly distrib- (Va1 *(r;0) =[Ve| (1 @) [/|V1]*(r; )), was 2107,
uted with ¢{0/d— s,<c, /d<c{®/d+ 8, for vector pertur- with the maximum relative difference being X710 “.
bations 8,= (0 033°0 033), (0.067,0 667 and (0.1,0.1 The Monte Carlo method is subject to additional error due
C . Pt 1 . L] ’ et il - . .
Here,c{) denotes the unperturbed position of it cylin- to estimating the truépopulation mean by an ensemble av-
der r;tsfindicated in Fig 1 erage(sample mean This is the dominant source of error,
Al' (Uniform radius oﬁe sided).,dd uniformly distrib- and to monitor the convergence of the process, we computed
uted With 0.3<a,/d<0 ’3+ 5. for 5";0 01 012 in 12 the standard error at each grid poirt P. We note(see Ref.
steps e a a Trmerrem [11], for example that the standard error is simply the stan-
Apz: (Uniform radius, two sided). @d uniformly distrib- dard deviation of the distribution of the sample mean about

) - the population mean, and may be estimated in terms of the
iunteldzv;ntt:pg.s— 0a=8,/d<0.3+3,, for 5,=0.01 ... 0.12 standard deviatiorsy of the individual values in the en-

A3: (Uniform area, two sided)Cylinder cross-sectional semzble. In particular, IeN be _the m_meer of realizations,
area A, uniformly distributed with 70.3— S,<A,/d? Vil (r,_w) be the normal!zed Intensity ane(r; ) be_ the
<70.2+ 5. with maximal area perturbatio =7r(25 normalized LDOS for thgth realization. For convenience,

o A oD A2 letv; denote eithefV|?(r; ) or pi(r;w), as appropriate.
+6%) determined by choosingy,=0.01,...,0.12 in 12 : : ;
steSs a ' Then, for fixedr, w, variablesv, ... vy are independent

Nll' (Uniform index, two sided). nuniformly distributed and identically distributed random variables. lEfv) and
with 30_ 5nsn€S3.d+ 5., for $n=0.1, 012 in 12 qﬁ denote the cor.re'sponding mean and varia.nce, respec-
steps tively. If these are finite then the standard error is

In studies of the intensity along the bent guide, we con- v2 74 N 12
mVar(E vi)]

sidered caseRl1, Al, A3, and three instances &f1: 5, =
=0.3, 0.6, and 1.0. We also studied the effects of disorder i=1
on the LDOS in selected cases.

The simulation program was implemented as a :(iNo_z
NZ

1 N
Var( E(v)— N 21 vi)

1/2

FORTRANO5 parallel program using a master/slave configura-

tion, with slave processors handling individual realizations.

The computational work was carried out on an SGI Origin T

2400 shared-memory parallel machine using the Message _\/N'

Passing InterfacéMPI) suite to support multiple slave pro-

cesses and OpenMP to support loop parallelism within a

slave process, and on a Compag Alphaserver SC distributediccording to the central limit theorem, under these assump-

memory parallel machine using only MPI. tions the limiting distributionfasN— o) of the sample mean
Initial studies on the SGI Origin consisted of ensemblegs normal. Estimatingr, by the sample variance then lets us

of 50 realizations, with fields computed at points on a two-determine confidence intervals fd&(v), in particular, a

dimensional grid. The same ensemble size was used for ear§8.3% confidence interval for the mean normalized intensity

studies on the Alphaserver SC. Changes in the scheduling approximately{ (v)— (o /VN),(v)+ (on/N)], that is,

algorithm used on the latter machine prompted a reduction i88.3% of samples of this size capture the expected normal-
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Sn(dv) Within the cluster, the standard error varies with both po-
sition and level of disorder. Figure 3 illustrates the relative
0.25 ,\/\ standard erroiSy(|V|%)/{|V|*) after N=48 realizations at
, \ each of the four points in the cluster as a function of the level
02 of disorder, for the straight guide in caséd and N1.
\ . : : o AT
0.15 | [ e Strong disorder is characterized by large variations in crystal
0.1 | \I A —r— structure between different realizations, yielding higher stan-
) | I i~a e T s dard error in the Monte Carlo estimates of mean field values
0.05 /\’J e T than for weak disorder.
N As we observe in Sec. lll, guiding is preserved for disor-
0.5 10 20 30 40 50 der in radius and index of up to approximately 20%, that is,

6,=0.06 ands,<0.6. Figure 2 suggests that in the region
FIG. 2. Convergence of Monte Carlo simulations in case where guiding is preserved, more than ten realizations are
standard erroBy(¢y) vs numbe of realizations, foin the order ~ required to achieve reliable estimates of the expected nor-
of increasing dash lengths,=0.03 (10% randomization 0.06  malized intensity or LDOS. For precision, Table | gives the
(20% randomizatiop and 0.1(33.3% randomization Note the ini- ~ minimum sample size, equal to or exceeding ten, required at
tial increases for smak. each level of disorder examined in cask$ and N1, to
achieve confidence intervals at selected levels for 10% error
ized intensity in this interval. Correspondingly, a 95.4% con-in the estimated mean normalized intenditigat is, |E(v)
fidence interval orE(v) is given by[(v)—(20n/YN),(v)  —(v)|/{v)<0.1] at the point (0,0), in the middle of the
+(2ay/N)]. As the sample sizBl—, the interval width ~ Straight guide.
decreases as+IN in both the cases.
~In addition to computing the standard error at the indi- lIl. ONE-DIMENSIONAL BEHAVIOR
vidual grid points, we studied the convergence of the method FOR SMALL DISORDER
by tracking the convergence of the standard e8gro,) of
the norm of the vector of normalized intensitgr LDOS) First we consider how, for straight guides, the guiding
values over the grid, that is, of characteristics vary with increasing disorder in given param-
eters. Figure 4 gives thumbnail illustrations of normalized
12 intensity maps over representative individual crystal realiza-
tions in caséAl. Figure 5 gives corresponding histograms of
the normalized intensity attenuation coefficiend (where
—ad is the slope of a straight line fitted to the graph of the
12 natural log of normalized intensity versus normalized dis-
tancey/d along the center of the guidleWe observe that
guiding is still strong at 10% and even 20% disorder, but
that the channel is effectively closed at 33.3% disorder.
for 1<j<N. Figure 2 plots the estimated standard error Table Il gives the estimated means and standard devia-
Su(@y) againstN for the straight guide in cas&l (uniform  tions of the sampled normalized intensity attenuation coeffi-
radius, one sidedor three levels of disorder. In all the three cients in casef1, A3, andN1. We note here that the ex-
cases we observe an initial increas&j{ ¢y). Thisis dueto pectation value of the fill fraction of the crystal coincides
the large variation in a sample average for a small sampl&ith the fill fraction of the unperturbed crystal, whereas in
size. As the sample size increases, this variability peaks, aftmasesA1l andA2 it does not. We discuss this point in more
which we observe convergence setting in, albeit somewhaletail below. The results presented in Table Il indicate that
later (N~10) for weak disorder than for strong disorder very similar behavior occurs in all three cases for small dis-
(N=~4). Ignoring this initial phase and fitting the remaining order, and in caseA3 andN1 for large disorder. In particu-
data (N>10) to the expressiortN® yields b=—0.68, lar, in casesA3 andN1 we observe an apparently linear
—0.46, and—0.48, respectively, these values being consis+telationship betweens and o2 for small disorder §,

de

asv(j>=’[gp||vj|2<r:w>|2

de
¢p<1>=§[r2plp,-<r;w>|2

tent with the expected rate of convergenceNof®>, =<0.06 ands,<0.6).
Sas(IVI/<IVIZ> Si(VI<IVI®> FIG. 3. Relative standard error
Si(IVIADI(|V|?) after 48 realiza-
0.5 0.5 . tions for straight guide vs level of
04 04 - disorder in caseAl (left) andN1
K y; (right) at points in the crystafin
0.3 NN 0.3 S 7 order of increasing dash length
02 ‘é\g,_—'_‘;,} 0.2 B at the midpoint of the guide, a
0.1 T 0.1 et e point in the middle of the left half
il 5 il 5, of the crystal matrix, the guide en-
002 004 006 008 01 02 04 06 08 1 trance, and the guide exit.
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TABLE I. Number of realizations equal to or exceeding ten, at which 68.3% confidence intervals and
95.4% confidence intervals for a maximum relative error of 10% in the estimated mean normalized intensity
at the origin(center of the guidewere first achieved. Column (N) gives the total number of realizations
considered. The remaining three columns give the results for &s@ieft), A3 (centej, andN1 (right). In
each row, the perturbation parametehas the same magnitude relative to the corresponding unperturbed
parametefrespectivelyd=1, a/d=0.3, andn=3.0).

R1 A3 N1

N O¢ 68.3% 95.4% 0, 68.3% 95.4% O 68.3% 95.4%
48 0.033 17 0.01 10 10 0.1 10 11
48 0.067 38 0.02 10 15 0.2 10

60 0.1 55 0.03 12 51 0.3 44

90 0.04 21 77 0.4 82
200 0.05 52 183 0.5 97
200 0.06 40 164 0.6

228 0.07 51 178 0.7 119

228 0.08 80 0.8

228 0.09 162 0.9

228 0.10 140 1.0

228 0.11 205 11

228 0.12 1.2

Figure 6 shows maps of the mean normalized intensityegime—both demonstrate Fabry-Perot beating with compa-
(over 50 realizationsfor caseAl in the straight(left) and  rable beat lengths. For higher degrees of disorder this close
bent(middle) guides at the same levels of randomization, asagreement breaks down. However, when the plots for various
seen in Fig. 4. We observe similar qualitative behavior ins, along the center of just the straight guide are superim-
both the cases. The rightmost column of Fig. 6 shows th@osed(Fig. 8), we note a significant variation in beat lengths
mean LDOS mapped over the crystal with the bent guideas &, increases, although the phase jump that occurs upon
For 10% randomization we observe very small LDOS valueseflection at the far end of the channel appears to be constant.
in the interior of the crystal, with relatively large values  Since in caséAl the normalized cylinder radius, /d is
along the guide and at the crystal surface, indicating thatiniformly distributed on 0.3,0.3+ 8,], changingd, results
radiation is suppressed in the crystal except along the guidén a change in the mean cross-sectional area of the cylinders
The left and middle columns of Fig. 6 indicate that with theand hence in the fill fraction of the crystal, giving rise to
source located at the entrance to the guide, the propagatirghanges in the optical properties, such as the beat length, of
state along the guide is excited in both straight and benthe bulk crystal. To demonstrate this, we computed the beat
guides. frequency as a function of radius, for an ideal waveguide

As disorder increases, the LDOS maps in Fig. 6 indicatevhich is modeled as a cavity of arbitrary width sand-
that the available states in the crystal increase until, atviched between two identical semi-infinite photonic crystals.
33.3%, there are similar numbers of states available for raEach of the crystals can be considered as an infinite stack of
diation into the crystal interior and radiation along the guide.cylinder gratings of periodl, satisfying a Bloch condition
The mean normalized intensity map illustrates the consewith Bloch factor expi(Byd). Using a transfer matrix method
guent loss of guiding. Similar results are obtained for disor{15], the Bloch modes of the crystal may be generdtak
der in the refractive indices of the cylinders: guiding is main-Appendiy and from these the reflection scattering maRix
tained at levels of up to 20% randomization of the indicesfor the semi-infinite crystal may be deduc®&V, is a function
after which a progressive loss of guiding is observed. of wave numbek, Bloch vectorB,, and material properties,

The straight and bent guides have different geometriesncluding the cylinder radius.
but are of the same length when measured along the center of The field within the guide may be represented by a linear
the channel. Figure 7 superimposes logarithmic plots otombination of left and right traveling plane waves:
mean normalized intensity along the guide for bent and .
straight guides at the same levels of randomization in case i e . -

Al. The spike indicates the source position and vertical lines Y (X:¥)= p;_m [f, e el 24 f elxplr 2l BpY,
indicate the beginning and end of the channel. There is ex- (6)
cellent agreement between straight and bent guidessfor

<0.06 (i.e., 20% disorder but differences begin to emerge WhereB,=Bo+2mp/d andx,= \k*~ B;. In Eq.(6), phase
for 6,>0.06. This suggests that the two guides demonstraterigins are set at the boundari@s= +h/2 of the crystal
essentially one-dimensional behavior for weak disorder. Taovalls. In vector notation, Witmiz[fg] denoting vectors of
first order, the two guides appear very similar in thisplane wave field coefficients, arRl=diag exp{x,h) charac-
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FIG. 4. (Color onling Normalized intensity in individual crystal realizations of straight guide with disordered radius
bations of normalized radiua/d uniformly distributed or{ 0,5,].
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terizing plane wave propagation across the cavity, it follows
that the consistency conditions for propagation are

f_=R.Pf., f,=R.Pf_. (7)
These yield the dispersion relation
detG(k,Bp)=0, where G=1-R,.PR.P, (8)

which is solved forB, using standard numerical techniques.
While these require the truncation of infinite series and, cor-
respondingly, truncation of the dimensions of matriégs
andP, the treatment is very robust, generating, for this con-
figuration, propagation constanf%, which converge to at
least six significant figures for symmetrically truncated series
containing five or more terms. Better than three significant
figures of accuracy are available when only the single zeroth
order plane wave term is included, demonstrating that for a
wavelengthh =3.3d, which is long in comparison with the
lattice constant, the diffraction problem is dominated by the
specular plane wave. In this case, the dispersion relation can
be simplified[15] to a simple scalar approximation:

ReRyo

| ROO| 2

1

€)

argR,,=cos” - xoh,

where Re denotes the real part @Rgh denotes the specular
(00) reflection coefficient of the cylinder gratings that con-
stitute the semi-infinite crystals.

In Figure 9, the continuous curve shows the variation of
the propagation constay [Eqgs. (8) and (9)] with radius,
while the superimposed points are derived from the data of
Figs. 6, 8, with abscissa values corresponding to the mean
radius of the one-sided distributi@id= 0.3+ 6,/2. There is
remarkable agreement between the two fé65<0.06
((a)/d=0.33), after which the effects of the disorder be-
come substantial, in keeping with the above discussion and
the data of Fig. 4.

In contrast, caseé2 (double-sided uniform distribution
of radius perturbationsa,/d uniformly distributed with 0.3

FIG. 5. Histograms of normalized intensity attenuation coeffi- — §;<a,/d<0.3+ 8,) andA3 (double-sided uniform distri-
cients ad along the center of the straight guide with disorderedbution of cylinder cross-sectional area perturbatiafg
radius: 48 realizations with one-sided perturbations of normalizedjield quite different results. In the first case the mean change

radius uniformly distributed of0,5,].

in fill factor is greatly reduced, and in the second it is zero.

TABLE Il. Estimated meanéad) and standard deviations, of the distributions of normalized intensity
attenuation coefficientad in casesR1, A3, andN1.

R1 A3 N1
¢ <ad> T ad Oa <ad> O ad On <(1d> O ad

0.033 0.014 0.011 0.01 0.014 0.0084 0.1 0.014 0.010

0.066 0.019 0.022 0.02 0.017 0.017 0.2 0.016 0.021

0.10 0.028 0.033 0.03 0.020 0.026 0.3 0.020 0.031
0.04 0.026 0.031 0.4 0.029 0.042
0.05 0.035 0.039 0.5 0.042 0.056
0.06 0.046 0.054 0.6 0.059 0.073
0.07 0.064 0.070 0.7 0.084 0.094
0.08 0.10 0.084 0.8 0.12 0.11
0.09 0.20 0.13 0.9 0.21 0.15
0.1 0.33 0.18 1.0 0.30 0.18
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FIG. 6. (Color onling Uniform radius disorder: one sided. Comparison of disorder effects in straight and bent guides: whole crystal. Left
and center: mean normalized intensity and right: mean normalized LDOS.

The results of both are similar; Fig. 8 suggests that we neety. TRANSITION TO TWO-DIMENSIONAL BEHAVIOR

quite large degrees of disorder or structures of different Logarithmic normalized intensity plots along the channel
lengths to produce significant change in the beat length isuggest that attenuation along the channel is relatively small
these cases. We note that similar results were obtained for tHer low levels of disorder, but increases faf,>0.06
bent guide. (for this crystal. Correspondingly, with strong bandgap
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<I1VI2> 4=0.0 <I1V|2> &=0.02 Bod
Sy 01
0.01 \ 0.01 \ 18
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0.0001 y/d  0.0001 y/d 1.6
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1.4
<I1VI2> 4,=0.04 <I1V|2> 4,=0.06
S o e .
0001 0001 032 03 o034 o5 N
0.0001 y/d 00001 y/d : . ’ - :
-50 510152025 -50 510152025 0.8¢
<IVI2> 4,=0.08 <IVI?> 4,=0.10 FIG. 9. Normalized propagation constaigyfl) vs normalized
1 1 mean cylinder radiuga)/d for a disordered guide embedded in a
0.1 0.1 - . . : ;
0.01 0.01 finite cluster(isolated points compared with that of a guide formed
0.001 0.001 by a cavity between two semi-infinite crystals with no disorder and
0.0001 d  0.0001 d i ii i ini i i
30 510152005 Y/ 30 510152005 Y/ cylinder radii(a) (continuous curve The finite cluster is subject to

one-sided uniform radius disordécaseAl), yielding a propaga-
FIG. 7. (Color onling Uniform radius disorder: one sided. Com- tion constant which increases with the degree of disdréigr. 8a)]
parison of the mean normalized intensity in straight and bent guidegnd hence with the mean radiga) of the cylinders:5,=0.01
with disordered radius at the same levels of randomization: centegorresponds tqa)/d=0.305 and§,=0.1 corresponds tda)/d
of guide. =0.35.

- : and along cross sections cutting the channel for the straight
guiding for small disorder, we expect strong decay of they ige. Figure 1(a) gives scatter plots for the normalized

field into the crystal interior. Figure 10 plots the normalized attenyation coefficients along the channel for individual re-
intensity for case\3 along a cross section cutting the crystal gjizations of the straight and bent guides, against the level of
halfway along the guide, for different levels of disorder. Thedisorder. The means of these coefficients are indicated by
four vertical lines in each plot indicate the positions of thecorresponding lines. Again we observe that the behavior is
outer layers of the crystal and the sides of the channel, witlot strongly affected fos,<0.06.
the channel itself in the center and free space at either end. Figure 11b) plots just the means of the normalized at-
For §,=<0.06, we again observe strong containment of theenuation coefficients for realizations of the straight guide,
field in the channel; the linear fit indicates that decay into theboth along the channel and along a cross section through the
crystal is exponential on an average. FHr>0.06 we ob-  center of the cluster, perpendicular to the channel. The wide
serve that containment weakens and the quality of the lineggeparation between these valuesdg«0.06 is indicative of
fit deteriorates, indicating both decreasing attenuation int@ one-dimensional guiding behavior. However, the decreas-
the crystal and a possible shift away from exponerfialan  ing separation for 0.06 5,<0.1 indicates a transition from
average decay. 1D to 2D beh:_;mwor, characterizing the closure of the guide,
The results described so far suggest that as disorder ifPiS being achieved as the curves meetdgr-0.1. Results
creases, in both the straight and the bent guides, there isf@ uniform perturbations of indexcase N1) are very
transition from essentially one-dimensional behavior alongMiar
the guide to two-dimensional behavior as the guiding breaks
down. Linear fits of the logarithmic data allow us to com-
pute, for each realization, normalized attenuation coefficients The guides studied were robust with respect to levels of
along the channel for both the straight and the bent guideslisorder(uniformly distributed random perturbations of ra-

V. DISCUSSION AND CONCLUSIONS

0.1 0.1
0.01 0.01
0.001 0.001
0-0001 0 5 10 15 20 25 yd - 0.0001 0 5 10 15 20 25 yd

(@) (b)

FIG. 8. (Color onlineg Combined plots of mean normalized intensity of straight guide with increasing disorder: center of(guiciese
A1 (uniform radius disorder: one sidedb) CaseA3 (uniform area disorder: two sidgd
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FIG. 10. (Color online Uniform area disorder: two sided. Loga- 0.25
rithmic plots of mean normalized intensity at different levels of 5
disorder in a straight guide along a cross-section cutting the crystal
ght 9 9 9 y (b) 002 004 006 008 0.1 0.2

at the midpoint of the guide.

. . . . FIG. 11. (Color onling (a) Scatter plot of normalized attenua-
0,
dius or index of up to about 20%, even when guides Cor]tamtion coefficientsad along the guide for individual realizations of

bends. Howe.vgr, biases in distribution, Wh'le_ not aﬁeCt'ngcrystals. Coefficients for the straight guide with disordered radius
the fact O_f guiding(at least f(_)r small Ievels_ Of disordercan . (one-sidegl are slightly offset to the left of those for the bent guide
have major effects on optical characteristics of the guidgyii, gisordered aredtwo sided. The mean coefficients for each
(e.g., beat lengfh At least in some cases it appears that to &evel of randomization are joined by a line, for ease of inspection.
first order of approximation, the optical characteristics of the(n) Mean normalized attenuation coefficients for the straight guide
guide remain unaffected by the existence of bends in th@ith disordered area, two sided. The lower line gives mean coeffi-
guide. For sufficiently high levels of disorder, the breakdowncients for the field along the middle of the guide. The two upper
of guiding manifests itself as a transition from one- lines give mean coefficients along cross sections to the left and right
dimensional to two-dimensional behavior. of the midpoint of the guide.

We note that the analysis given here does not include
some of the effects that are important in practical devicesmunications(ac3 and the Australian Partnership for Ad-
For example, the cylinders are assumed to be of infinitezanced ComputingAPAC) National Facility.
length and the propagation is assumed to be exclusively in
the plane orthogonal to the cylinder axes. In practice, the
devices include cylinders of finite length, with the confine-
ment in this direction typically provided by total internal  Here, we outline the formation of the reflection matRix
reflection. Thus, the analysis ignores the losses of the lighttom the computation of the Bloch modes of the crystal,
that has been scattered by the disorder, to propagate in diregsing a transfer matrix method. In this, we characterize the
tions where the total internal reflection condition is Vi0|ated,properties of each constituent cylinder grating with reflection
so that it can escape the waveguide. R and transmissionT scattering matrices. As in Refs.

Despite these caveats, these results appear encouragifg, 16|, the matrices are indexed by integgrandg, e.g.,
for the practical application of two-dimensional photonic Rpq. denoting, respectively, input and output channels that
crystal waveguides, in the sense that moderate errors in rgorrespond to directions given by wave numbggsand By,
dius and refractive index appear to have a relatively smaliyhijle the reflection and transmission scattering matrices

APPENDIX

effect on guiding. may be computed with a variety of techniques, we use mul-
tipole methodg16] for reasons of accuracy and efficiency.
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Using the Bloch condition for field quasiperiodicity between  For a semi-infinite crystal, for which there is no rear sur-

grating layers, we form the eigenvalue equation face from which to generate backward propagating modes,
the propagation problem can be solved exclusively in terms

T(9+> _ <g+) (A2) of forward propagating states. Introducing matri€es, the

g- —H g- columns of which comprise the eigenvectgrs of the for-

' . ' ward modes, we can write the incident plane wave fiéld
from which the Bloch factorgeigenvalues are obtained. and the reflected field at the interface of the semi-infinite

Here, crystals as a linear combination of the forward propagating
T-RT!'R RT! Bloch modes:
[rRR Ty
S -l p
. . . = C.
is the interlayer translation operator. r G_ (A4)

Bloch modes occur in forward/backward propagating
pairs, leading to a natural partitioning of the mode set. ForE
rectangular lattices, it can be shown thatufis an eigen-
value corresponding to a forward propagating mode denote
by the pair @, ,9-), then the corresponding backward

propagating state has eigenvalué! and eigenvector pair def
(9-,0.). r=R.8, where R,=G_G,!. (A5)

liminating coefficientsc leads naturally to the following
gefinition ofR,:
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