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Effects of disorder in two-dimensional photonic crystal waveguides
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The effects of randomness on the guiding properties of waveguides embedded in disordered two-
dimensional photonic crystals composed of a finite cluster of circular cylinders of infinite length are investi-
gated for TM-polarized radiation. Different degrees of disorder in the radius, filling fraction, refractive index,
and position are considered for both straight and 90° bent guides. The crystals exhibit similar sensitivity to
refractive index and radius disorder, with a degree of disorder from 15%–20% yielding little substantial change
in the guiding properties. A smaller range of position disorder is also considered. For strong disorder in radius
and refractive index, the guide effectively closes. These results were obtained by a Monte Carlo simulation
method, and the performance of this method is analyzed. The method requires at least ten realizations in some
cases for convergence to commence; substantially more realizations are required for moderate and strong
disorder to achieve accurate results.
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I. PHOTONIC CRYSTALS

Photonic crystals—materials with a periodic refractive
dex distribution—are a subject of worldwide research. O
of the main aims is to achieve a photonic band gap, a ra
of frequencies in which light is unable to propagate in a
direction@1–3#. One of the most important properties of su
structures is their ability to tailor the path of propagation
light on the scale of the wavelength without diffractio
losses~Fig. 1!. In particular, Mekiset al. @4# showed compu-
tationally that it is possible to bend the direction of propag
tion of light by 90° without substantial losses, a result th
has been confirmed experimentally@5#. Various circuit com-
ponents which depend on this and related properties, suc
Y @6# and T junctions@1# and channel-drop filters@7#, have
been proposed.

This unique guiding property of photonic crystals rais
the possibility of miniaturizing photonic circuits and as
consequence, integrating a number of different devices
one substrate to create a full photonic circuit@8#. A model of
an all-optical microtransistor has already been proposed@9#.
To combine and connect the different components inside
all-optical chip, it is necessary to establish a clear und
standing of the waveguiding properties of such structu
Furthermore, a comprehensive understanding of the to
ances, in other words the degree of imperfection that s
structures can withstand, is vital for the effective design
such devices.

Here, we investigate the effects of disorder on t
waveguiding properties of such structures. We model fa
cation defects in two-dimensional~2D! waveguides, based
on a finite cluster ofNc dielectric cylinders of infinite length
arranged in a square lattice with lattice constantd, by intro-
ducing random perturbations in the radii and refractive in
ces of the cylinders as well as in their positions. The guid
excited by a line source parallel to the cylinders, loca
close to the entry of the guide. The resulting field intens
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and local density of states~LDOS! are calculated using a
highly accurate multipole method@10#. Note that in this pa-
per, references to the electric field intensity denote the int
sity normalized to a unit field strength; the LDOS has be
similarly normalized. Quantitative results characterizing t
effects of fabrication defects for a TM-polarized field a
obtained by Monte Carlo simulation@11#. Two aspects are
considered: studies of straight guides, and studies of gu
containing two 90° bends. We show that such tw
dimensional circuits are not very sensitive to disorder, w
variations up to 20% not generally compromising guidan
in the cases of radius and refractive index disorder. Disor
of up to 10% in cylinder positions is also studied, and ag
we observe that guidance is not compromised. We furt
study the size of random ensembles needed to establish
tolerances with accuracy, with ten members at least be
necessary to observe commencement of convergence a
classical Monte Carlo rate of 1/AN, whereN is the number
of realizations.

First, we give a short description of the method used
calculate the normalized electromagnetic field~Sec. II! as
well as the Monte Carlo simulation method and its conv
gence. In Sec. III, we study the effects of weak disorder
the radius, refractive index, and position, on guiding for bo
straight and bent guides, while in Sec. IV we consider
effects of strong disorder and establish the degree of diso
where there is a complete breakdown of guidance.

II. METHOD

A. Outline of multipole method

We consider in-plane propagation with theE field parallel
to the cylinders. In this case,~the TM polarization! the two-
dimensional electric Green tensor contains a single nontri
component which can be represented using a multipole
pansion. The wave equation is solved for a point sou
©2003 The American Physical Society11-1
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FIG. 1. ~Color online! Electric field intensity~normalized to a unit field strength! for a straight guide~252 cylinders! with no disorder and
with radius 0.3d at wavelengths:~a! l53.3d ~in the band gap!, ~b! l55.0d ~outside the gap!, and~c! guide with bends~226 cylinders with
radius 0.3d) at l53.3d. The length of this guide~measured down the center of the channel! is equal to the length of the straight guide. I
both the cases the guide is excited by a line source parallel to the cylinder axes, as indicated by the black dot.
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¹W 2V(r ,cs)1k2n2(r )V(r ,cs)5d(r2cs), where V is the z
component of the electric field due to a source atcs and
normalized to a unit field strength,k is the free-space wav
number, andn is the refractive index. The field may be re
resented by a Wijngaard expansion, valid everywhere in
crystal matrix@10#, given by

V~r ,cs!5
1

4i
xext~cs!H0

(1)~kur2csu!

1(
q

(
m52`

`

Bm
q Hm

(1)~kur2cqu!

3eim arg~r2cq!, ~1!

where the sums are over rods~q! and cylindrical harmonics
(m); the first term represents the source and the remain
terms represent the field scattered by the cylinders. H
xext(cs) is 1 for a source exterior to all cylinders and
otherwise. Similarly, lettingx,

int(cs) be 1 if the source lies in
cylinder , and 0 otherwise, the normalized field expansi
inside cylinder, with refractive indexn, is given by

V~r ;cs!5
1

4i
x,

int~cs!H0
(1)~kn,ur2csu!

1 (
m52`

`

Cm
, Jm~kn,ur2c,u!eim arg(r2c,). ~2!

A local expansion is also valid in an annulus outside e
(,th! cylinder:

V~r ,cs!5 (
m52`

`

@Am
, Jm~kur2cl u!

1Bm
, Hm

(1)~kur2cl u!#eim arg(r2cl ). ~3!
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These expressions forV must be consistent, and Graf’s ad
dition theorem is used to equate Eqs.~1! and~3!, given their
use of different origins. We thus obtain@12# an identity of the
form Am

, 5xext(cs)Km
, 1(qÞ,(mSmp

,q Bp
q or, in matrix form,

A5xext~cs!K1SB, ~4!

where K is associated with the source andSB is due to
scattering by all cylindersqÞ,. An additional relation be-
tween A and B is needed to solve this system; this is o
tained from the boundary conditions at each cylinder bou
ary, and reads

B5RA1Tx intQ, ~5!

whereR and T denote matrices of cylindrical harmonic re
flection and transmission coefficients@13#, respectively, and
termQ represents a source interior to a cylinder. A full de
vation may be found in Ref.@10#. Combining Eqs.~4! and
~5! yields the following equation:

~ I2RS!B5xextRK1x intTQ.

This system is then solved to find coefficientsBm
, and thus

the entire field external to the cylinders. Reconstruction
the field inside the,th cylinder requires coefficientsCm

, .
Again, these are obtained from boundary conditions, yield
~in matrix form!

C5T8A1R8x intQ,

whereR8 andT8 are matrices of reflection and transmissi
coefficients. The method is efficient and accurate, even
disordered structures in which the positions, radii, and refr
tive indices of the cylinders are arbitrary.
1-2
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EFFECTS OF DISORDER IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026611 ~2003!
A key quantity characterizing the radiation dynamics o
fluorescent source is the~spatially resolved! local density of
states@14# r̃(r ;v), given for r in the matrix by

r̃~r ;v!52
2v

pc2
Im@V~r ,r ;v!#.

The LDOS provides the spectral distribution of modes
which a source at a particular point may couple and is p
portional to the total power emitted by a line source at t
point. Thus, for a given frequency a large value ofr̃ indi-
cates that light emission at that frequency is enhanced.
respondingly, smallr̃ indicates suppression of emission.
the following, we normalizer̃ to the dimensionless quantit
r5 r̃pc2(2v)21.

B. Monte Carlo simulation

We consider ensembles of realizations with random p
turbations in positionr , , radius a, , or index n, of each
cylinder. For studies of intensity in the straight guide, w
consider five types of perturbations.

R1: (Uniform position, two sided).c, uniformly distrib-
uted with c,

(0)/d2dc<c, /d<c,
(0)/d1dc , for vector pertur-

bations dc5(0.033,0.033), ~0.067,0.067!, and ~0.1,0.1!.
Here,c,

(0) denotes the unperturbed position of the,th cylin-
der, as indicated in Fig 1.

A1: (Uniform radius, one sided). a, /d uniformly distrib-
uted with 0.3<a, /d<0.31da , for da50.01, . . . ,0.12 in 12
steps.

A2: (Uniform radius, two sided). a, /d uniformly distrib-
uted with 0.32da<a, /d<0.31da , for da50.01, . . . ,0.12
in 12 steps.

A3: (Uniform area, two sided).Cylinder cross-sectiona
area A, uniformly distributed with p0.322dA<A, /d2

<p0.321dA with maximal area perturbationdA5p(2da

1da
2) determined by choosingda50.01, . . . ,0.12 in 12

steps.
N1: (Uniform index, two sided). n, uniformly distributed

with 3.02dn<n,<3.01dn , for dn50.1, . . . ,1.2 in 12
steps.

In studies of the intensity along the bent guide, we co
sidered casesR1, A1, A3, and three instances ofN1: dn
50.3, 0.6, and 1.0. We also studied the effects of disor
on the LDOS in selected cases.

The simulation program was implemented as
FORTRAN95parallel program using a master/slave configu
tion, with slave processors handling individual realizatio
The computational work was carried out on an SGI Orig
2400 shared-memory parallel machine using the Mess
Passing Interface~MPI! suite to support multiple slave pro
cesses and OpenMP to support loop parallelism withi
slave process, and on a Compaq Alphaserver SC distribu
memory parallel machine using only MPI.

Initial studies on the SGI Origin consisted of ensemb
of 50 realizations, with fields computed at points on a tw
dimensional grid. The same ensemble size was used for e
studies on the Alphaserver SC. Changes in the schedu
algorithm used on the latter machine prompted a reductio
02661
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the ensemble size to 48 realizations in later studies. H
ever, this had a negligible effect on the results. We inve
gate the relationship between the ensemble size and com
tational accuracy below, using additional results from stud
using larger ensembles, but with fields computed at sele
points.

C. Convergence

Our computational objective was to estimate the expe
tion values of the normalized intensityE(uVu2) or the nor-
malized LDOS E(r) at each point r on a grid P
(3013301 points foruVu2 and 1513151 for r). The multi-
pole method~Sec. II A! is exact up to the truncation of th
series, hence the Monte Carlo method estimates the mea
the truncated series. Some indication of the truncation e
is found by considering the difference in the results obtain
for a single crystal with no disorder, using additional terms
expansion~1!–~3!. For the straight guide, the average re
tive difference observed at grid points within the cluster b
tween the normalized intensity results using 9 terms@24
<m<4 in Eqs.~1!–~3!# and 11 terms (25<m<5), that is,
^uuV11u2(r ;v)2uV9u2(r ;v)u/uV11u2(r ;v)&, was 2.131024,
with the maximum relative difference being 1.731022.

The Monte Carlo method is subject to additional error d
to estimating the true~population! mean by an ensemble av
erage~sample mean!. This is the dominant source of erro
and to monitor the convergence of the process, we comp
the standard error at each grid pointrPP. We note~see Ref.
@11#, for example! that the standard error is simply the sta
dard deviation of the distribution of the sample mean ab
the population mean, and may be estimated in terms of
standard deviationsN of the individual values in the en
semble. In particular, letN be the number of realizations
uVj u2(r ;v) be the normalized intensity andr j (r ;v) be the
normalized LDOS for thej th realization. For convenience
let v j denote eitheruVj u2(r ;v) or r j (r ;v), as appropriate.
Then, for fixedr , v, variablesv1 , . . . ,vN are independen
and identically distributed random variables. LetE(v) and
sv

2 denote the corresponding mean and variance, res
tively. If these are finite then the standard error is

FVarS E~v !2
1

N (
i 51

N

v i D G1/2

5F 1

N2
VarS (

i 51

N

v i D G 1/2

5S 1

N2
Nsv

2D 1/2

5
sv

AN
.

According to the central limit theorem, under these assum
tions the limiting distribution~asN→`) of the sample mean
is normal. Estimatingsv by the sample variance then lets u
determine confidence intervals forE(v), in particular, a
68.3% confidence interval for the mean normalized intens
is approximately@^v&2(sN /AN),^v&1(sN /AN)#, that is,
68.3% of samples of this size capture the expected norm
1-3
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LANGTRY et al. PHYSICAL REVIEW E 68, 026611 ~2003!
ized intensity in this interval. Correspondingly, a 95.4% co
fidence interval onE(v) is given by@^v&2(2sN /AN),^v&
1(2sN /AN)#. As the sample sizeN→`, the interval width
decreases as 1/AN in both the cases.

In addition to computing the standard error at the in
vidual grid points, we studied the convergence of the met
by tracking the convergence of the standard errorSN(fv) of
the norm of the vector of normalized intensity~or LDOS!
values over the grid, that is, of

fV~ j !5
defF (

rPP
uuVj u2~r ;v!u2G1/2

,

fr~ j !5
defF (

rPP
ur j~r ;v!u2G1/2

,

for 1< j <N. Figure 2 plots the estimated standard er
SN(fV) againstN for the straight guide in caseA1 ~uniform
radius, one sided! for three levels of disorder. In all the thre
cases we observe an initial increase inSN(fV). This is due to
the large variation in a sample average for a small sam
size. As the sample size increases, this variability peaks, a
which we observe convergence setting in, albeit somew
later (N'10) for weak disorder than for strong disord
(N'4). Ignoring this initial phase and fitting the remainin
data (N.10) to the expressioncNb yields b520.68,
20.46, and20.48, respectively, these values being cons
tent with the expected rate of convergence ofN20.5.

FIG. 2. Convergence of Monte Carlo simulations in caseA1:
standard errorSN(fV) vs numberN of realizations, for~in the order
of increasing dash length! da50.03 ~10% randomization!, 0.06
~20% randomization!, and 0.1~33.3% randomization!. Note the ini-
tial increases for smallN.
02661
-

-
d

r

le
ter
at

-

Within the cluster, the standard error varies with both p
sition and level of disorder. Figure 3 illustrates the relati
standard errorSN(uVu2)/^uVu2& after N548 realizations at
each of the four points in the cluster as a function of the le
of disorder, for the straight guide in casesA1 and N1.
Strong disorder is characterized by large variations in cry
structure between different realizations, yielding higher st
dard error in the Monte Carlo estimates of mean field val
than for weak disorder.

As we observe in Sec. III, guiding is preserved for diso
der in radius and index of up to approximately 20%, that
da<0.06 anddn<0.6. Figure 2 suggests that in the regio
where guiding is preserved, more than ten realizations
required to achieve reliable estimates of the expected
malized intensity or LDOS. For precision, Table I gives t
minimum sample size, equal to or exceeding ten, require
each level of disorder examined in casesA1 and N1, to
achieve confidence intervals at selected levels for 10% e
in the estimated mean normalized intensity@that is, uE(v)
2^v&u/^v&,0.1] at the point (0,0), in the middle of th
straight guide.

III. ONE-DIMENSIONAL BEHAVIOR
FOR SMALL DISORDER

First we consider how, for straight guides, the guidi
characteristics vary with increasing disorder in given para
eters. Figure 4 gives thumbnail illustrations of normaliz
intensity maps over representative individual crystal reali
tions in caseA1. Figure 5 gives corresponding histograms
the normalized intensity attenuation coefficientad ~where
2ad is the slope of a straight line fitted to the graph of t
natural log of normalized intensity versus normalized d
tancey/d along the center of the guide!. We observe that
guiding is still strong at 10% and even 20% disorder, b
that the channel is effectively closed at 33.3% disorder.

Table II gives the estimated means and standard de
tions of the sampled normalized intensity attenuation coe
cients in casesR1, A3, andN1. We note here that the ex
pectation value of the fill fraction of the crystal coincide
with the fill fraction of the unperturbed crystal, whereas
casesA1 andA2 it does not. We discuss this point in mo
detail below. The results presented in Table II indicate t
very similar behavior occurs in all three cases for small d
order, and in casesA3 andN1 for large disorder. In particu-
lar, in casesA3 and N1 we observe an apparently linea
relationship betweend and s uVu2 for small disorder (da
<0.06 anddn<0.6).
r

f

-

FIG. 3. Relative standard erro
S48(uVu2)/^uVu2& after 48 realiza-
tions for straight guide vs level o
disorder in casesA1 ~left! andN1
~right! at points in the crystal~in
order of increasing dash length!:
at the midpoint of the guide, a
point in the middle of the left half
of the crystal matrix, the guide en
trance, and the guide exit.
1-4
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EFFECTS OF DISORDER IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026611 ~2003!
TABLE I. Number of realizations equal to or exceeding ten, at which 68.3% confidence interval
95.4% confidence intervals for a maximum relative error of 10% in the estimated mean normalized in
at the origin~center of the guide! were first achieved. Column 1~N! gives the total number of realization
considered. The remaining three columns give the results for casesR1 ~left!, A3 ~center!, andN1 ~right!. In
each row, the perturbation parameterd has the same magnitude relative to the corresponding unpertu
parameter~respectively,d51, a/d50.3, andn53.0).

R1 A3 N1
N dc 68.3% 95.4% da 68.3% 95.4% dn 68.3% 95.4%

48 0.033 17 0.01 10 10 0.1 10 11
48 0.067 38 0.02 10 15 0.2 10
60 0.1 55 0.03 12 51 0.3 44
90 0.04 21 77 0.4 82

200 0.05 52 183 0.5 97
200 0.06 40 164 0.6
228 0.07 51 178 0.7 119
228 0.08 80 0.8
228 0.09 162 0.9
228 0.10 140 1.0
228 0.11 205 1.1
228 0.12 1.2
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Figure 6 shows maps of the mean normalized inten
~over 50 realizations! for caseA1 in the straight~left! and
bent~middle! guides at the same levels of randomization,
seen in Fig. 4. We observe similar qualitative behavior
both the cases. The rightmost column of Fig. 6 shows
mean LDOS mapped over the crystal with the bent gui
For 10% randomization we observe very small LDOS valu
in the interior of the crystal, with relatively large value
along the guide and at the crystal surface, indicating t
radiation is suppressed in the crystal except along the gu
The left and middle columns of Fig. 6 indicate that with t
source located at the entrance to the guide, the propaga
state along the guide is excited in both straight and b
guides.

As disorder increases, the LDOS maps in Fig. 6 indic
that the available states in the crystal increase until,
33.3%, there are similar numbers of states available for
diation into the crystal interior and radiation along the guid
The mean normalized intensity map illustrates the con
quent loss of guiding. Similar results are obtained for dis
der in the refractive indices of the cylinders: guiding is ma
tained at levels of up to 20% randomization of the indic
after which a progressive loss of guiding is observed.

The straight and bent guides have different geometr
but are of the same length when measured along the cent
the channel. Figure 7 superimposes logarithmic plots
mean normalized intensity along the guide for bent a
straight guides at the same levels of randomization in c
A1. The spike indicates the source position and vertical li
indicate the beginning and end of the channel. There is
cellent agreement between straight and bent guides foda
<0.06 ~i.e., 20% disorder!, but differences begin to emerg
for da.0.06. This suggests that the two guides demonst
essentially one-dimensional behavior for weak disorder.
first order, the two guides appear very similar in th
02661
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regime—both demonstrate Fabry-Perot beating with com
rable beat lengths. For higher degrees of disorder this c
agreement breaks down. However, when the plots for vari
da along the center of just the straight guide are super
posed~Fig. 8!, we note a significant variation in beat length
as da increases, although the phase jump that occurs u
reflection at the far end of the channel appears to be cons

Since in caseA1 the normalized cylinder radiusa, /d is
uniformly distributed on@0.3,0.31da#, changingda results
in a change in the mean cross-sectional area of the cylin
and hence in the fill fraction of the crystal, giving rise
changes in the optical properties, such as the beat lengt
the bulk crystal. To demonstrate this, we computed the b
frequency as a function of radius, for an ideal wavegu
which is modeled as a cavity of arbitrary widthh, sand-
wiched between two identical semi-infinite photonic crysta
Each of the crystals can be considered as an infinite stac
cylinder gratings of periodd, satisfying a Bloch condition
with Bloch factor exp(ib0d). Using a transfer matrix method
@15#, the Bloch modes of the crystal may be generated~see
Appendix! and from these the reflection scattering matrixR`

for the semi-infinite crystal may be deduced.R` is a function
of wave numberk, Bloch vectorb0, and material properties
including the cylinder radiusa.

The field within the guide may be represented by a lin
combination of left and right traveling plane waves:

V~x,y!5 (
p52`

`

@ f p
2e2 ixp(x2h/2)1 f p

1eixp(x1h/2)#eibpy,

~6!

wherebp5b012pp/d andxp5Ak22bp
2. In Eq. ~6!, phase

origins are set at the boundariesx56h/2 of the crystal
walls. In vector notation, withf65@ f p

6# denoting vectors of
plane wave field coefficients, andP5diag exp(ixph) charac-
1-5
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FIG. 4. ~Color online! Normalized intensity in individual crystal realizations of straight guide with disordered radius: one-sided p
bations of normalized radiusa/d uniformly distributed on@0,da#.
026611-6
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EFFECTS OF DISORDER IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026611 ~2003!
FIG. 5. Histograms of normalized intensity attenuation coe
cients ad along the center of the straight guide with disorder
radius: 48 realizations with one-sided perturbations of normali
radius uniformly distributed on@0,da#.
02661
terizing plane wave propagation across the cavity, it follo
that the consistency conditions for propagation are

f25R`Pf1 , f15R`Pf2 . ~7!

These yield the dispersion relation

detG~k,b0!50, where G5I2R`PR̀ P, ~8!

which is solved forb0 using standard numerical technique
While these require the truncation of infinite series and, c
respondingly, truncation of the dimensions of matricesR`

andP, the treatment is very robust, generating, for this co
figuration, propagation constantsb0 which converge to at
least six significant figures for symmetrically truncated ser
containing five or more terms. Better than three signific
figures of accuracy are available when only the single zer
order plane wave term is included, demonstrating that fo
wavelengthl53.3d, which is long in comparison with the
lattice constant, the diffraction problem is dominated by t
specular plane wave. In this case, the dispersion relation
be simplified@15# to a simple scalar approximation:

argR`5cos21
ReR00

uR00u2
52x0h, ~9!

where Re denotes the real part andR00 denotes the specula
~00! reflection coefficient of the cylinder gratings that co
stitute the semi-infinite crystals.

In Figure 9, the continuous curve shows the variation
the propagation constantb0 @Eqs. ~8! and ~9!# with radius,
while the superimposed points are derived from the data
Figs. 6, 8, with abscissa values corresponding to the m
radius of the one-sided distributiona/d50.31da/2. There is
remarkable agreement between the two forda,0.06
(^a&/d50.33), after which the effects of the disorder b
come substantial, in keeping with the above discussion
the data of Fig. 4.

In contrast, casesA2 ~double-sided uniform distribution
of radius perturbations:a, /d uniformly distributed with 0.3
2da<a, /d<0.31da) andA3 ~double-sided uniform distri-
bution of cylinder cross-sectional area perturbationsdA)
yield quite different results. In the first case the mean cha
in fill factor is greatly reduced, and in the second it is ze

-

d

y
TABLE II. Estimated meanŝad& and standard deviationssad of the distributions of normalized intensit
attenuation coefficientsad in casesR1, A3, andN1.

R1 A3 N1
dc ^ad& sad da ^ad& sad dn ^ad& sad

0.033 0.014 0.011 0.01 0.014 0.0084 0.1 0.014 0.010
0.066 0.019 0.022 0.02 0.017 0.017 0.2 0.016 0.021
0.10 0.028 0.033 0.03 0.020 0.026 0.3 0.020 0.031

0.04 0.026 0.031 0.4 0.029 0.042
0.05 0.035 0.039 0.5 0.042 0.056
0.06 0.046 0.054 0.6 0.059 0.073
0.07 0.064 0.070 0.7 0.084 0.094
0.08 0.10 0.084 0.8 0.12 0.11
0.09 0.20 0.13 0.9 0.21 0.15
0.1 0.33 0.18 1.0 0.30 0.18
1-7
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FIG. 6. ~Color online! Uniform radius disorder: one sided. Comparison of disorder effects in straight and bent guides: whole cryst
and center: mean normalized intensity and right: mean normalized LDOS.
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The results of both are similar; Fig. 8 suggests that we n
quite large degrees of disorder or structures of differ
lengths to produce significant change in the beat length
these cases. We note that similar results were obtained fo
bent guide.
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IV. TRANSITION TO TWO-DIMENSIONAL BEHAVIOR

Logarithmic normalized intensity plots along the chann
suggest that attenuation along the channel is relatively sm
for low levels of disorder, but increases forda.0.06
~for this crystal!. Correspondingly, with strong bandga
1-8
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EFFECTS OF DISORDER IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026611 ~2003!
guiding for small disorder, we expect strong decay of
field into the crystal interior. Figure 10 plots the normaliz
intensity for caseA3 along a cross section cutting the crys
halfway along the guide, for different levels of disorder. T
four vertical lines in each plot indicate the positions of t
outer layers of the crystal and the sides of the channel, w
the channel itself in the center and free space at either
For da<0.06, we again observe strong containment of
field in the channel; the linear fit indicates that decay into
crystal is exponential on an average. Forda.0.06 we ob-
serve that containment weakens and the quality of the lin
fit deteriorates, indicating both decreasing attenuation
the crystal and a possible shift away from exponential~on an
average! decay.

The results described so far suggest that as disorde
creases, in both the straight and the bent guides, there
transition from essentially one-dimensional behavior alo
the guide to two-dimensional behavior as the guiding bre
down. Linear fits of the logarithmic data allow us to com
pute, for each realization, normalized attenuation coefficie
along the channel for both the straight and the bent guid

FIG. 7. ~Color online! Uniform radius disorder: one sided. Com
parison of the mean normalized intensity in straight and bent gu
with disordered radius at the same levels of randomization: ce
of guide.
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and along cross sections cutting the channel for the stra
guide. Figure 11~a! gives scatter plots for the normalize
attenuation coefficients along the channel for individual
alizations of the straight and bent guides, against the leve
disorder. The means of these coefficients are indicated
corresponding lines. Again we observe that the behavio
not strongly affected forda<0.06.

Figure 11~b! plots just the means of the normalized a
tenuation coefficients for realizations of the straight guid
both along the channel and along a cross section through
center of the cluster, perpendicular to the channel. The w
separation between these values forda<0.06 is indicative of
a one-dimensional guiding behavior. However, the decre
ing separation for 0.06<da<0.1 indicates a transition from
1D to 2D behavior, characterizing the closure of the gui
this being achieved as the curves meet forda.0.1. Results
for uniform perturbations of index~case N1) are very
similar.

V. DISCUSSION AND CONCLUSIONS

The guides studied were robust with respect to levels
disorder~uniformly distributed random perturbations of ra

es
er

FIG. 9. Normalized propagation constant (b0d) vs normalized
mean cylinder radiuŝa&/d for a disordered guide embedded in
finite cluster~isolated points!, compared with that of a guide forme
by a cavity between two semi-infinite crystals with no disorder a
cylinder radii^a& ~continuous curve!. The finite cluster is subject to
one-sided uniform radius disorder~caseA1), yielding a propaga-
tion constant which increases with the degree of disorder@Fig. 8~a!#
and hence with the mean radius^a& of the cylinders:da50.01
corresponds tô a&/d50.305 andda50.1 corresponds tôa&/d
50.35.
FIG. 8. ~Color online! Combined plots of mean normalized intensity of straight guide with increasing disorder: center of guide.~a! Case
A1 ~uniform radius disorder: one sided!. ~b! CaseA3 ~uniform area disorder: two sided!.
1-9
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LANGTRY et al. PHYSICAL REVIEW E 68, 026611 ~2003!
dius or index! of up to about 20%, even when guides conta
bends. However, biases in distribution, while not affecti
the fact of guiding~at least for small levels of disorder!, can
have major effects on optical characteristics of the gu
~e.g., beat length!. At least in some cases it appears that t
first order of approximation, the optical characteristics of
guide remain unaffected by the existence of bends in
guide. For sufficiently high levels of disorder, the breakdo
of guiding manifests itself as a transition from on
dimensional to two-dimensional behavior.

We note that the analysis given here does not incl
some of the effects that are important in practical devic
For example, the cylinders are assumed to be of infin
length and the propagation is assumed to be exclusivel
the plane orthogonal to the cylinder axes. In practice,
devices include cylinders of finite length, with the confin
ment in this direction typically provided by total intern
reflection. Thus, the analysis ignores the losses of the l
that has been scattered by the disorder, to propagate in d
tions where the total internal reflection condition is violate
so that it can escape the waveguide.

Despite these caveats, these results appear encour
for the practical application of two-dimensional photon
crystal waveguides, in the sense that moderate errors in
dius and refractive index appear to have a relatively sm
effect on guiding.
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APPENDIX

Here, we outline the formation of the reflection matrixR`

from the computation of the Bloch modes of the cryst
using a transfer matrix method. In this, we characterize
properties of each constituent cylinder grating with reflect
R and transmissionT scattering matrices. As in Refs
@15,16#, the matrices are indexed by integersp and q, e.g.,
Rpq , denoting, respectively, input and output channels t
correspond to directions given by wave numbersbp andbq .
While the reflection and transmission scattering matri
may be computed with a variety of techniques, we use m
tipole methods@16# for reasons of accuracy and efficiency

Following the treatment of Ref.@15#, the fields between
the layers of the crystal are written in plane wave exp
sions:

V~x,y!5 (
p52`

`

@gp
2e2 ixpx1gp

1eixpx#eibpy. ~A1!

tal

FIG. 11. ~Color online! ~a! Scatter plot of normalized attenua
tion coefficientsad along the guide for individual realizations o
crystals. Coefficients for the straight guide with disordered rad
~one-sided! are slightly offset to the left of those for the bent guid
with disordered area~two sided!. The mean coefficients for eac
level of randomization are joined by a line, for ease of inspecti
~b! Mean normalized attenuation coefficients for the straight gu
with disordered area, two sided. The lower line gives mean coe
cients for the field along the middle of the guide. The two upp
lines give mean coefficients along cross sections to the left and r
of the midpoint of the guide.
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EFFECTS OF DISORDER IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026611 ~2003!
Using the Bloch condition for field quasiperiodicity betwe
grating layers, we form the eigenvalue equation

T S g1

g2
D 5mS g1

g2
D ~A2!

from which the Bloch factors~eigenvalues! are obtained.
Here,

T5S T2RT21R RT21

2T21R T21 D ~A3!

is the interlayer translation operator.
Bloch modes occur in forward/backward propagati

pairs, leading to a natural partitioning of the mode set.
rectangular lattices, it can be shown that ifm is an eigen-
value corresponding to a forward propagating mode deno
by the pair (g1 ,g2), then the corresponding backwa
propagating state has eigenvaluem21 and eigenvector pai
(g2 ,g1).
nd

n

u

02661
r

d

For a semi-infinite crystal, for which there is no rear su
face from which to generate backward propagating mod
the propagation problem can be solved exclusively in ter
of forward propagating states. Introducing matricesG6 , the
columns of which comprise the eigenvectorsg6 of the for-
ward modes, we can write the incident plane wave fieldd
and the reflected fieldr at the interface of the semi-infinite
crystals as a linear combination of the forward propagat
Bloch modes:

S d

r D 5S G1

G2
D c. ~A4!

Eliminating coefficientsc leads naturally to the following
definition of R` :

r 5
def

R`d, where R`5G2G1
21 . ~A5!
,
nd

de

de
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